
An Approach to Design with Differentiated Services by Contract

Romulo Cerqueira, Sidney Ansaloni, Orlando Loques
IC/UFF

Niterói, RJ, Brazil
{curty, ansaloni, loques}@ic.uff.br

Alexandre Sztajnberg
DICC/IME/UERJ

Rio de Janeiro, RJ, Brazil
alexszt@ime.uerj.br

Abstract
This poster presents an approach to describe and deploy system contracts with service guaranties having dynamic
functional and non-functional requirements, which include generic types of QoS. The approach defines the
relationships between contracts, differentiated quality of services, and the resource management process. We also
propose a multi l evel view to map these relationships as first class architectural entities.

1. Introduction
In our approach application's differentiated quality of
service requirements are described by CBabel ADL
contract extensions and mapped to the R-RIO
framework and user application components. The
infrastructure required to manage these contracts
follows a standard architectural pattern, which can be
directly mapped to specific components included in R-
RIO’s supporting middleware. This allows a designer to
write a contract and follow a standard recipe to insert in
those components the extra code required to its
enforcement.

Interactor

Se
rv

ic
e

Pr
of

ile

Se
rv

ic
e

Pr
of

ile

QoSAgent

Contract
Manager

Local

Contract
Manager
Global

Co
nt

ra
ct

Co
nt

ra
ct

global_service local_service
nativeValue

serviceEvent

QoS:
- Mapping
- Enforcing

global_service_1;
...
global_service_N;

outOfProfile
outOfService

local_service_1;
...
local_service_N;

Figure 1. Components used to enforce QoS

2. The Extended R-RIO Framework
The original R-RIO framework provided support to
architecture level contracts in an ad-hoc fashion.
Currently, our infrastructure can handle generic
contracts with dynamic component-based service
adaptations. This generality was achieved through a
pattern (fig. 1) based on three meta-level components:
Contract Manager that interprets contract descriptions
to extract service negotiation information and map each
service to a set of global services. When every service
inside the negotiation clause has been unsuccessfully
tried, an out-of-service state is reached, the service is
stopped, and a contract violation message is returned to
the user; Interactor translates pre-defined services to
system support level services, requests those services to
QoS Agents, and can receive out-of-range notifications
from these QoS Agents. When this occurs, the
Interactor can try to readapt the resource or notify the

Contract Manager to initiate another negotiation; QoS
Agents encapsulate the access to system level
mechanisms to actually make resource allocations and
to monitor required property values. Fig. 2 presents a
CBabel contract describing non-functional requirements
for a “DeskTop TV” service.

contract {
 service {
 start audioTVServer with
 Processing.codec = g723; } audio_qos_1;
 service {
 start audioTVServer with
 Processing.codec = pcm; } audio_qos_2;
 service {
 start videoTVServer with
 Processing.codec = h263; } video_qos_1;
 service {
 start videoTVServer with
 Processing.codec = h261; } video_qos_2;
 negotiation {
 video_qos_1 -> video_qos_2;
 video_qos_2 -> out_of_service;
 audio_qos_1 -> audio_qos_2;
 audio_qos_2 -> out_of_service;
} } deskTopTV;

Figure 2. DeskTopTV QoS contract

3. Conclusion
Our approach allows non-functional requirements to be
specified using high-level contracts associated to an
ADL. The mechanisms required to interpret and enforce
the contracts follow an architectural pattern that can be
implemented by a standard set of components. We have
evaluated the approach through use cases. This showed
that, depending on the particular contract, specific parts
of the code of the supporting components may have to
be adapted. We believe that our approach can help to
identify and make the required adaptations. In addition,
once defined, a particular contract and the supporting
components can be reused in different applications.

4. References
[1] Cerqueira, R., et al., “Deploying Non-Functional
Aspects by Contract” , Middleware 2003 - 2nd Workshop
on Reflective and Adaptive Middleware, Rio de
Janeiro, Brazil , June, 2003.

