
One-Page PEPt
Harold Carr

Sun Microsystems
harold.carr@sun.com

Abstract
PEPt is an architecture for implementing RPC systems. Although RPC systems seem quite varied they actually
share the same fundamental building blocks: presentation, encoding, protocol and transport (PEPt). Presentation
encompasses the data types and APIs available to the programmer. Encoding is the representation of those types on
the wire. Protocol frames the encoded data to denote the boundaries and intent of the message. Transport moves
the encoding + protocol from one location to another. The PEPt architecture enables a single programming model
to adaptively change encodings, protocols and transports.

1. Benefits
PEPt provides a simple but comprehensive framework
in which to understand, implement, reuse, evolve and
maintain finer-grained details of distributed communi-
cations systems. Most importantly, PEPt allows an
RPC system to adaptively change its subsystems.
2. PEPt Architecture

We illustrate PEPt by showing the interaction of its
main blocks in the lifecycle of an RPC request/re-
sponse. We assume programmers interact with an RPC
system via Presentation block stubs and ties.
3. Send

To send a request/response the stub/tie only needs an
Encoding OutputObject obtained from Protocol. On the
client side, Protocol contains a list of encoding/proto-
col/transport combinations (EPTC) which can service
the call. Transport ContactInfo of the selected EPTC is
a factory for Encoding OutputObjects, Transport Con-
nections and Protocol-specific RequestDispatchers.
Two key points: Transport is the plug-in point for al-

ternate EPTCs, and presentation block stubs and
skeletons should be independent of the EPTC.
Adaptive Send: If the selected EPTC supports connec-
tion multiplexing, getConnection would search a
ConnectionCache before creating a new Connection.
The EPTC may support fragmentation requiring inter-
action between Encoding and Transport. After Send, a
client may block on a read, suspend while another
thread reads a multiplexed connection, or the client
thread may continue servicing the server side of the re-
quest. These and other details are adaptively changed
depending on the selected EPTC.
4. Receive

When a request/reply arrives on Transport,
ProtocolHandler reads enough bits to determine the
EPTC. Transport ContactInfo/Acceptor then acts as a
factory for appropriate InputObjects and
RequestDispatchers. Protocol directs the request to the
appropriate stub/tie.
5. Conclusions and Future Work
PEPt provides a unified architecture for implementing
RPC systems. PEPt handles addressing, colocation, re-
tries, error handling, connection multiplexing, thread
pooling, fragmentation, transactions, security, plugging
in and adaptively changing EPTCs (e.g., CDR/IIOP,
SOAP/HTML). PEPt has been used in a commercial
CORBA system and to prototype a SOAP/HTML sys-
tem. In the future we plan to show how PEPt applies to
messaging systems.


