
Epidemic Algorithms for
Reliable Content-Based Publish-Subscribe

Paolo Costa, Matteo Migliavacca, Gian Pietro Picco, Gianpaolo Cugola
Dip. di Elettronica e Informazione, Politecnico di Milano, Italy�

costa,migliava,picco,cugola � @elet.polimi.it

Publish-subscribe middleware has recently become
popular because of its asynchronous, implicit, multi-
point, and peer-to-peer style of communication. A num-
ber of publish-subscribe systems have been proposed to
date. Here, we focus on those that seek increased scal-
ability and flexibility by exploiting a distributed archi-
tecture for event dispatching, and use a content-based
scheme to match events with subscriptions. Moreover,
we assume the common routing strategy based on a sub-
scription forwarding scheme where subscriptions deliv-
ered to every dispatcher along a single unrooted tree con-
necting all the dispatchers are used to establish the routes
followed by events. Unfortunately, this kind of middle-
ware usually does not provide reliability guarantees and
solutions developed in other contexts are not immedi-
ately applicable. In our research contribution, we de-
veloped solutions for reliable publish-subscribe. Our re-
sults are not tied to a specific source of event loss (e.g.
lossy links or topology changes) and hence enjoy gen-
eral applicability.

Our approach achieves reliability by relying on epi-
demic algorithms, a breed of distributed algorithms that
find inspiration in the theory of epidemics. Epidemic
(or gossip) algorithms constitute a lightweight, scalable,
and robust means of reliably disseminating information
to a group of recipients, by providing guarantees only
in probabilistic terms. Given their characteristics, epi-
demic algorithms are amenable to the unreliable and
highly dynamic scenarios we target.

Epidemic algorithms differ about the mode of com-
munication, which can exploit a push or pull style. In
a push style, each process gossips periodically, to dis-
seminate a digest of its cached events to other processes.
Instead, in a pull style a process solicits the transmission
of events from other processes to compensate for losses.

These algorithms typically rely on some notion of
group (or subject) that is exploited in at least two ways.
On one hand, the group defines the set of nodes (the
group members) that collectively define the scope of a
gossip interaction. Hence, it provides a way to deter-
mine how to route gossip messages within the system.

On the other hand, the group is used to tag the messages
exchanged within it, providing a clue for the recov-
ery process when the message gets lost. Unfortunately,
content-based publish-subscribe systems do not provide
an explicit notion of group. This observation is at the
core of the challenge of applying epidemic algorithms
to content-based publish-subscribe systems, which can
be summarized in two main issues: detecting event loss
and routing gossip messages.

The first algorithm we developed uses proactive gos-
sip push. Despite the absence of a group notion, we
leverage off of the fact that every dispatcher knows, ac-
cording to the subscription forwarding scheme, all the
patterns in the system, and consequently can determine
which patterns match a cached event � . Hence, each dis-
patcher is able to construct a gossip message which in-
cludes a digest of all the cached events matching a given
pattern � . This gossip message can then be labelled with

� and routed similarly to events matching � .
The other two algorithms adopt instead a reactive pull

scheme. The technique we employ to detect event loss
is to tag events with identifiers carrying enough infor-
mation to enable loss detection. Besides the publisher,
these identifiers contain information about the patterns
matched by the event, each associated with a sequence
number incremented at the source each time an event
is published for that pattern. This scheme, which is a
generalization of the one employed in subject-based sys-
tems, enables the detection of event loss. Whenever a
dispatcher receives an event matching a pattern � , but for
which the sequence number associated to � in the event
identifier is greater than the one expected for that pattern
and source, it can detect the loss of an event and trigger
the appropriate actions. The two solutions are comple-
mentary, and differ in the way they attempt to retrieve
the missing event. The first one steers gossip messages
towards the event receivers (the subscribers), while the
other steers them towards the publisher.

Simulation results show that our solutions indeed im-
prove significantly event delivery, are scalable, and in-
troduce only limited overhead.


