
SLAng: A Language for Defining Service Level Agreements∗

D.Davide Lamanna, James Skene and Wolfgang Emmerich
Department of Computer Science (UCL)

{D.Lamanna |J.Skene |W.Emmerich }@cs.ucl.ac.uk

E-business is impeded by technical integration barri-
ers. A large number of industry standards have emerged
that support the construction of distributed systems using
web services and distributed component technologies.
Functional integration may also include the provisioning
of infrastructure by one organisation for another, as in the
case of Internet Service Provisioning (ISP), Storage Ser-
vice Provisioning (SSP) and application hosting (ASP).
Unfortunately, combining functionality is not the only
requirement for e-business integration. Non-functional,
quality requirements must also be met. Service Level
Agreements (SLA)s capture the mutual responsibilities
of the provider of a service and its client with respect
to non-functional properties. Our language SLAng pro-
vides a format for the description of QoS properties,
the means to capture these properties unambiguously for
inclusion in SLAs and a language appropriate as input
for automated reasoning systems or QoS-aware adaptive
middleware.

SLAng defines QoS targets (e.g., performance, avail-
ability, reliability, etc.) based on the level of abstrac-
tion at which the system is being described (e.g., net-
work, middleware, application level). In order to iden-
tify opportunities for SLA between two parties, we have
defined a reference model. In our model, applications
are clients that use either components or web services to
deliver end-user services. Web services may be imple-
mented by invoking components. Components provide
an abstraction of the underlying resources. Containers
host component instances and are responsible for man-
aging the underlying resource services for communica-
tion, persistence, transactions, security and so forth. In
addition to tier-specific differentiation, we define Hor-
izontal SLAs, governing the interaction between coor-
dinated peers, and Vertical SLAs between subordinated
pairs. SLAng is structured to handle every possible com-
bination of business interactions.

The SLAng syntax is defined using XML Schema.
SLAng defines seven different types of SLA. They regu-
late the possible agreements between the different types

∗This work is partly funded through the EU IST Project 34069
(TAPAS) and Kodak.

of parties identified in our reference model. The Vertical
SLAs areApplication(between applications or web ser-
vices and components),Hosting(between container and
component providers),Persistence(between a container
provider and an SSP) andCommunication(between con-
tainer and network service providers). The Horizon-
tal SLAs that parties enter into by composing vertical
SLAs areService(between component and web service
providers),Container(between container providers) and
Networking(between network providers). For each kind
of SLA, a general structure is defined, including client,
server and mutual responsibilities.

As a case study, we used the Common Picture
eXchange environment (CPXe), an I3A (International
Imaging Industry Association) initiative to develop
Internet-based digital photo services. CPXe is an ar-
chitecture that links digital devices, Internet storage and
printing, and retail photo finishing together. It takes ad-
vantage of Web Services technologies such as SOAP,
WSDL and UDDI and supports a large number of sce-
narios for imaging applications that are distributed across
a number of parties. These scenarios we have been
analysing put in place collaborations that need to be reg-
ulated by SLAs, whenever organisational boundaries are
crossed. Our case-study scenarios intends to show that
choosing a business partner can be based on choosing
the best service level offer.

Using an industrial case study, we have convinced
ourselves that SLAng is expressive enough to represent
the QoS parameters required for the complete defini-
tion of interfaces in multi-party deployments. We have
achieved this by exploiting the different abstractions that
we have identified in our reference model and by using
abstraction-specific parameters for the necessary inter-
faces. We noted that the SLAs at these different tiers are
precise and fairly concise SLA specifications (no SLA
was longer than 2 KBytes). We also noted, however, that
further work is necessary on the definition of the seman-
tics of SLAng. Right now, the semantics are defined in-
formally, which has turned out to be a weakness. We also
intend to test the effectiveness of SLAng for monitoring
compliance to SLAs.

