
Assemblies of Local and Remote Components in the CORBA Component Model

Egon Teiniker
��� �

, Stefan Mitterdorfer
��� �

, Leif M. Johnson
�
,

Christian Kreiner
��� �

, Zsolt Kovács
�
, Reinhold Weiss

�

�
Institute for Technical Informatics

Graz University of Technology, Austria
Inffeldgasse 16, A-8010 Graz

egon.teiniker@tugraz.at

�
Salomon Automation GmbH

Friesachstrasse 15
Friesach bei Graz, Austria

The CORBA component model (CCM) defines a com-
ponent architecture and a container framework in which the
component life cycle takes place [2]. The CCM specifica-
tion describes only remote components where all ports are
accessible from CORBA clients [4].

In our Local Component Adapter Concept (LCAC), we
separate application code from the implementation of the
CORBA component logic [3]. For every IDL definition of a
CORBA interface or component, we define a corresponding
interface in the native implementation language. Adapter
classes provide CORBA mappings, and link the implemen-
tation of business logic to the CCM component. By taking
advantage of the adapter concept, we can implement local
components without a CORBA shell. Using a local path for
connecting components significantly reduces the communi-
cation overhead. Note that the decision between using the
local or remote adapters does not affect the implementation
of the business logic; in other words we can choose the re-
mote accessibility of a component in a port by port manner
at deployment time.

An important aspect of the LCAC is the separation be-
tween the component model and the implementation of
components. The CCM component model is defined by two
metamodels, BaseIDL and ComponentIDL. Dividing com-
ponent models from component realizations leads to more
flexibility in describing (IDL, UML, etc.) and using (local
vs. remote) components. The business logic developer uses
the local component logic and adapters convert the calls to
the underlying remote technology in a transparent manner.
So we can choose the best remote technology for the partic-
ular domain at deployment time.

Local components increase runtime performance, but
they are not accessible from other processes. To overcome
this problem, we can build assemblies of local and remote
components using the Session Facade pattern [1]. If an in-
stance of a session facade component is created, all con-

nected local and remote components will automatically be
instantiated and connected. From the client’s point of view,
the session facade is a fat remote component. In fact, it
contains an assembly instance graph consisting of thin re-
mote and local components that ensure easy reuse of busi-
ness code.

To verify our concept, we implemented an application
framework that uses local and remote Java components on
the client side, while the server side is built from remote
component assemblies implemented in C++. Our experi-
ments show that the communication overhead of local Java
and C++ components is not significant compared to plain
class method calls. As expected, the costs of remote com-
munication are significantly higher than for local access.
These results support our hypothesis that the use of assem-
blies of local and remote CCM components allows us to
effectively implement modular applications that can be ac-
cessed from remote clients.

References

[1] Floyd Marinescu. EJB Design Patterns: Advanced Pat-
terns, Processes and Idioms. Wiley Computer Publish-
ing, 2002.

[2] OMG. CORBA Components. Technical Report 02-06-
65, Object Management Group, June, 2002.

[3] Egon Teiniker, Stefan Mitterdorfer, Christian Kreiner,
Zsolt Kovács, and Reinhold Weiss. Local Components
and Reuse of Legacy Code in the CORBA Component
Model. In EUROMICRO 2002, Dortmund, Germany,
Sept. 4-6, 2002, pages 4–9, 2002.

[4] N. Wang, D. Schmidt, and D. Levine. Optimizing the
CORBA Component Model for High-performance and
Real-time Applications, 2000.


